Hurricane Harvey: 1 Million Hiroshima Bombs per Day

August 25th, 2017

Hurricane Harvey off the east coast of Texas at 9:30 a.m. CDT August 25, 2017, as seen by the new GOES-16 satellite (CIRA/CSU processing).

Mother Nature routinely deals with huge amounts of energy. In the case of hurricanes, some of the solar energy stored in the upper ocean is rapidly removed by strong winds in the form of evaporated water vapor, which then feeds the hurricane as the vapor condenses into rain and the “latent heat of condensation” is released.

That heating causes the warm core of the hurricane, creating the “eye” and producing the strong winds circling the eye. The rain itself falls back to the surface, and in the coming week eastern Texas will no doubt be dealing with one of the worst flooding disasters on record with 1 to 3 feet of rain.

The amount of energy released in such a storm is staggering. It can be computed that the average hurricane releases the energy equivalent of 10 Hiroshima-class bombs every second.

That’s approximately 1 million atomic bombs per day. Given Harvey’s size and intensity, I suspect the real number is even larger.

As the above image shows, nature can be beautiful and dangerous at the same time.

Skeptic Beating Al Gore on Amazon

August 24th, 2017

Al Gore’s new movie, An Inconvenient Sequel: Truth to Power, has been in theaters for about a month now, and has received rather tepid reviews.

The Kindle e-book version of Gore’s movie, despite being very colorful, has been doing even worse and is currently running at #20,768 overall on Amazon, and is not ranked #1 in any sub-category.

But the skeptic take-down of Gore’s new movie and book, An Inconvenient Deception: How Al Gore Distorts Climate Science and Energy Policy, is at #956, and is #1 in three sub-categories.

What makes the discrepancy even worse is that An Inconvenient Deception was self published, with no paid advertising.

Maybe people are finally wising up to Mr. Gore.

Space Station Crossed the Sun During Eclipse

August 23rd, 2017

Now that a day or so has passed since the total solar eclipse raced across the United States, we are beginning to see some of the better photos from professional photographers appear.

I’ve gathered a handful of what I consider to be some of the best photos so far. I think the most unique photo was by Canadian photographer Derek Kind, who travelled to a remote spot in Wyoming just to capture the International Space Station crossing the sun at the same time as the moon was crossing. I’ve witnessed the ISS crossing the sun before, and you have to be in just the right place at just the right time to witness it.

ISS passing in front of the sun during the eclipse, Derek Kind, somewhere in Wyoming.

The following photos are also exceptional.

Prominences, Dave Cotterell, Glendo, Wyoming.

Using a hydrogen alpha filter and small telescope, by “V3ngence”, Livermore, California.

Moshen Chan, Madras, Oregon.

Jimmy Eubanks, Sunset, South Carolina.

Multi-exposure composite, showing Earthshine reflecting off the dark side of the moon. Joe Woolbright, unknown location.

A video of people gathered to capture the Space Station transiting the sun can be seen here.

Total Eclipse from Center Hill Lake, TN

August 22nd, 2017

My family and friends drove north from Huntsville, AL the 2-3 hours to get into the path of totality. The weather was better than usual. As we drove into Tennessee, scattered cumulus and towering cumulus clouds were forming.

Our preferred destination was Hurricane Marina, 50 miles east of Nashville. This is a beautiful and rather remote spot on Center Hill Lake, and it has huge houseboats owned (I assume) by some of the wealthier people in Nashville.

Hurricane Marina on Center Hill Lake, 50 miles east of Nashville.

The two concerns driving there were traffic and the weather. Traffic was not too bad. We had previously decided to take the back roads as much as possible. Scattered clouds were forming, but I hoped that the skies would be clearer around the lake, which is large and often suppresses convection during fair weather.

When we arrived the parking lot — which is huge — was already full. We walked out on the dock to the restaurant/store, and set up folding chairs in the red tent with the blue roof in the photo, to the right of the main building. It was very warm and humid, typical for Tennessee in August.

I started setting up my two camera tripods at the lower-right corner of the platform the restaurant and shop are on. It was then that I realized the entire dock was floating (even the one with the store & restaurant) and it wouldn’t be stable enough for time lapse photography.

So, we watched the sun become covered by the moon with our eclipse glasses. The surroundings darken so gradually you barely notice the effect.

Then I suddenly realized all of the clouds were gone. The reduction in solar heating was just enough to cause the convective thermals to weaken and not penetrate the inversion that was no doubt present.

I decided to carry my equipment to the rocky shoreline in the left-center portion of the above photo. By the time I got there the landscape was getting darker by the second. I set up both tripods up the bank a ways and realized my main camera would not get both the lake surface and the sun in the frame, even at 15 mm focal length, which is very wide angle.

I quickly took one tripod to the water’s edge, set it up on three unstable rocks, inserted my intervalometer that controls the timing of the photos, and… the little button battery fell out into the water under one of the rocks.

I quickly found it, dried it, inserted it, set it to 2 second intervals and started it up. Here’s the resulting time lapse video… this is high-def, so if you watch full-screen at 1080p, you will see Jupiter at left-center.

I set the camera to a fixed exposure so you could see just how dark it gets during totality; the start of the video, even though overexposed, is when the moon has covered the sun by 97-98%, so it was already pretty dark. The video is running 30 times faster than real time.

As the sky quickly darkened, I rushed to the other tripod and placed my Nikon P900 superzoom, which I only use for video at high magnification, on it. I had already decided to not fool with the settings, and just let it run on “auto” and see what I got. The camera took video for about 5 minutes, and I learned afterward it was having difficult focusing.

Here are a couple of screen shots from the video:

“Diamond ring” effect just before totality, with Regulus to the left.

Late in totality.

I was surprised how quickly it becomes dark as totality approaches. We had 2 minutes and 38 seconds of totality. Just as soon as totality started, fish near me jumped out of the water, and birds and crickets started chirping.

Back in Huntsville, which experienced 97% of totality, I was taking air temperatures every 10 sec in our backyard. I took ambient air temperature, as well as the air temperature in a Styrofoam cooler, painted black inside, with Saran Wrap covering it. The ambient air temperature drop during the maximum portion of eclipse was about 10 deg. F, while temperature drop in the cooler was over 100 deg. F.

Air temperatures outside (blue trace) and inside a Styrofoam cooler (other 2 traces) during the solar eclipse in Huntsville, AL, 21 August 2017.

It was a thoroughly enjoyable experience. This was my first total eclipse, and we were indeed fortunate to have good weather for it.

An Inconvenient Deception: How Al Gore Distorts Climate Science and Energy Policy

August 19th, 2017

Al Gore has provided a target-rich environment of deceptions in his new movie.

After viewing Gore’s most recent movie, An Inconvenient Sequel: Truth to Power, and after reading the book version of the movie, I was more than a little astounded. The new movie and book are chock-full of bad science, bad policy, and factual errors.

So, I was inspired to do something about it. I’d like to announce my new e-book, entitled An Inconvenient Deception: How Al Gore Distorts Climate Science and Energy Policy, now available on Amazon.com.

After reviewing some of Gore’s history in the environmental movement, I go through the movie, point by point.

One of Gore’s favorite tactics is to show something that happens naturally, then claim (or have you infer) that it is due to humanity’s greenhouse gas emissions. As I discuss in the book, this is what he did in his first movie (An Inconvenient Truth), too.

For example, sea level rise. Gore is seen surveying flooded streets in Miami Beach.

That flooding is mostly a combination of (1) natural sea level rise (I show there has been no acceleration of sea level rise beyond what was already happening since the 1800s), and (2) satellite-measured sinking of the reclaimed swamps that have been built upon for over 100 years in Miami Beach.

In other words, Miami Beach was going to have to deal with the increasing flooding from their “king tides”, with or without carbon dioxide emissions.

Gore is also shown jumping across meltwater streams on the Greenland ice sheet. No mention is made that this happens naturally every year. Sure, 2012 was exceptional for its warmth and snow melt (which he mentioned), but then 2017 came along and did just the opposite with record snow accumulation, little melt, and the coldest temperature ever recorded in the Northern Hemisphere for a July.

The fact that receding glaciers in Alaska are revealing stumps from ancient forests that grew 1,000 to 2,000 years ago proves that climate varies naturally, and glaciers advance and recede without any help from humans.

So, why is your SUV suddenly being blamed when it happens today?

The list goes on and on.

Some of what Gore claims is just outright false. He says that wheat and corn yields in China are down by 5% in recent decades. Wrong. They have been steadily climbing, just like almost everywhere else in the world. Here’s the situation for all grain crops in China:

And that lack of rainfall in Syria that supposedly caused conflict and war? It didn’t happen. Poor farmers could no longer afford diesel fuel to pump groundwater because Assad tripled the price. Semi-arid Syria is no place to grow enough crops for a rapidly growing population, anyway.

I also address Gore’s views on alternative energy, mainly wind and solar. It is obvious that Gore does not consider government subsidies when he talks about the “cost” of renewable energy sometimes being cheaper than fossil fuels. Apparently, he hasn’t heard that the citizens pay the taxes that then support the alternative energy industries which Gore, Elon Musk and others financially benefit from. If and when renewable energy become cost-competitive, it won’t need politicians and pundits like Mr. Gore campaigning for it.

To counter what is in movie theaters now, I had to whip up this book in only 2 weeks, and I didn’t have a marching army of well-funded people like Gore has had. (Too bad he didn’t have someone doing fact-checking.) Despite my disadvantage, I think I present a powerful case that most of what he presents is, at the very least, very deceptive.

UAH Global Temperature Update for July, 2017: +0.28 deg. C

August 1st, 2017

The Version 6.0 global average lower tropospheric temperature (LT) anomaly for July, 2017 was +0.28 deg. C, up a little from the June, 2017 value of +0.21 deg. C (click for full size version):

Global area-averaged lower tropospheric temperature anomalies (departures from 30-year calendar monthly means, 1981-2010). The 13-month centered average is meant to give an indication of the lower frequency variations in the data; the choice of 13 months is somewhat arbitrary… an odd number of months allows centered plotting on months with no time lag between the two plotted time series. The inclusion of two of the same calendar months on the ends of the 13 month averaging period causes no issues with interpretation because the seasonal temperature cycle has been removed as has the distinction between calendar months.

The global, hemispheric, and tropical LT anomalies from the 30-year (1981-2010) average for the last 19 months are:

YEAR MO GLOBE NHEM. SHEM. TROPICS
2016 01 +0.55 +0.73 +0.38 +0.84
2016 02 +0.86 +1.19 +0.52 +0.99
2016 03 +0.76 +0.99 +0.54 +1.10
2016 04 +0.72 +0.86 +0.58 +0.93
2016 05 +0.53 +0.61 +0.45 +0.71
2016 06 +0.32 +0.47 +0.17 +0.38
2016 07 +0.37 +0.43 +0.30 +0.48
2016 08 +0.43 +0.53 +0.32 +0.50
2016 09 +0.45 +0.50 +0.39 +0.38
2016 10 +0.42 +0.42 +0.41 +0.46
2016 11 +0.46 +0.43 +0.49 +0.36
2016 12 +0.26 +0.26 +0.27 +0.23
2017 01 +0.33 +0.32 +0.33 +0.09
2017 02 +0.39 +0.58 +0.19 +0.07
2017 03 +0.23 +0.37 +0.09 +0.06
2017 04 +0.27 +0.29 +0.26 +0.22
2017 05 +0.44 +0.39 +0.49 +0.41
2017 06 +0.21 +0.32 +0.09 +0.39
2017 07 +0.28 +0.29 +0.27 +0.51

The linear temperature trend of the global average lower tropospheric temperature anomalies from January 1979 through July 2017 is now +0.13 C/decade.

NOTE: In June 2017 we added the Metop-B satellite to the processing stream, with data since mid-2013. The Metop-B satellite has its orbit actively maintained, so the AMSU data from it does not require corrections from orbit decay or diurnal drift. As a result of adding this satellite, most of the monthly anomalies since mid-2013 have changed, by typically a few hundredths of a degree C.

The UAH LT global anomaly image for July, 2017 should be available in the next few days here.

The new Version 6 files should also be updated in the coming days, and are located here:

Lower Troposphere: http://vortex.nsstc.uah.edu/data/msu/v6.0/tlt/uahncdc_lt_6.0.txt
Mid-Troposphere: http://vortex.nsstc.uah.edu/data/msu/v6.0/tmt/uahncdc_mt_6.0.txt
Tropopause: http://vortex.nsstc.uah.edu/data/msu/v6.0/ttp/uahncdc_tp_6.0.txt
Lower Stratosphere: http://vortex.nsstc.uah.edu/data/msu/v6.0/tls/uahncdc_ls_6.0.txt

4,300 Days Since Last U.S. Major Hurricane Strike

July 31st, 2017

Wednesday of this week will mark 4,300 days since the last major hurricane (Category 3 or stronger, 111-129 mph maximum sustained winds) made landfall in the U.S.

That’s almost 12 years.

The last major hurricane to make landfall in the U.S. was Wilma striking Florida on October 24, 2005, one of several strong hurricanes to hit the U.S. that year. The unusual hurricane activity in 2005 was a central focus of Al Gore’s 2006 movie, An Inconvenient Truth, in which Mr. Gore suggested 2005 was going to be the new normal. As you might recall, Gore went on to receive a Nobel Peace Prize for helping to raise awareness of the severe weather dangers from global warming.

Instead, the bottom dropped out of Atlantic hurricane activity after 2005. The “drought” of landfalling U.S. major hurricanes continues, and as seen in this graphic from WeatherStreet.com, no hurricanes have yet formed anywhere in the Atlantic basin in 2017, despite the forecast for an above-normal hurricane season:

Cumulative number of Atlantic hurricanes by date during the hurricane seasons of 2017, 2016, and the record-active year of 2005.

Study: Sea Level Rise Revised Downward

July 21st, 2017

If I had not looked past the headline of the press report on a new study, I would have just filed it under “It’s worse than we thought”. A new study in Nature reported on July 17 carried the following headlines:

“Satellite snafu masked true sea-level rise for decades”
“Revised tallies confirm that the rate of sea-level rise is accelerating as the Earth warms and ice sheets thaw.”

When I read that, I (like everyone else) assumed that corrections to the satellite sea level data since 1993 have now led to a revised trend toward faster (not slower) sea level rise. Right?

Wrong.

During the satellite era (since 1993), the trend in sea level rise was revised downward, by almost 10%, from 3.28 mm/year to about 3.0 mm/year. (For those concerned about Miami going underwater, these numbers equate to a little more than one inch every 10 years). This result was published back in April in Geophysical Research Letters, and the new Nature study looks at the wiggles in the revised data since 1993 and makes ominous pronouncements about sea level rise “acceleration”.

I’m calling “fake science news” on the Nature reporter who covered the story. The headline was technically correct…but misleading. (I can also make up technically correct headlines: “Scientists Agree: Sea Levels are Rising, We are All Going to Die”)

The researchers in April made a major adjustment to the first 1/4 of the satellite record, bringing those early sea levels up. This results in adding curvature to the upward trend (an acceleration) by flattening out the early part of the curve. This new signature of “acceleration” was what made the news in the new Nature study, even though the long term trend went down.

Should this New “Acceleration” be the News?

In a word, no.

Short-term undulations in the sea level rise curve should not be used as a predictive curve for the future. They are affected by a wide variety of natural phenomena. For example, ice loss from Greenland (which was large in 2011-12) has recently reversed itself with huge gains made in the last year. These events are governed by natural variations in weather patterns, which have always occurred.

For longer-term variations, yes, the rate of sea level rise during the entire period since 1993 probably is a little more than, say, during the period since 1900 (sea level rise was occurring naturally, anyway). But the inferred acceleration is small. And even that acceleration could be mostly natural — we simply don’t know.

My main point is that the Nature headline was misleading. They clearly had to find something in the study that supported the alarmist view of sea level rise, and they figured few people would read past the headline.

A face-value reading of the two main studies together results in the conclusion that sea level rise since 1993 has been revised downward. The most recent study then reads too much into the wiggles in the new data, and even implies the acceleration will continue with the statement, “The suggested acceleration… highlights the importance and urgency of mitigating climate change and formulating coastal adaptation plans to mitigate the impacts of ongoing sea level rise”.

The new study does NOT revise recent sea level rise upward, as is suggested by the Nature headline quoted above.

Warming in the Tropics? Even the New RSS Satellite Dataset Says the Models are Wrong

July 14th, 2017

Tropical cloud systems seen from the International Space Station.

From recent media reports (e.g. the WaPo’s Capital Weather Gang) you would think that the new RSS satellite dataset for the lower troposphere (LT) has resolved the discrepancy between climate models and observations.

But the new LT dataset (Version 4, compared to Version 3.3) didn’t really change in the tropics. This can be seen in the following plot of a variety of observational datasets and the average of 102 CMIP5 climate model simulations.

Comparison of 102 CMIP5 climate model runs (average of 32 groups) against various observations for tropical lower tropospheric temperature anomalies during 1979-2016. All yearly time series were vertically placed so that their linear trends all intersect at zero, which is the proper way to display them to compare how much warming has occurred over the entire time period. The results were then displayed as running 5 year averages.

It’s pretty clear that the models are producing too much atmospheric warming compared to satellites, radiosondes (weather balloons), and multi-observational atmospheric reanalyses. (And remember, the observations have a record warm El Nino at the end of the time series, which the model average does not. Without that, the discrepancy would be even larger).

For those who claim, But humans live at the surface, not up in the atmosphere, do those same people ignore the warming of the deep oceans, too? Or maybe they will claim, But most people don’t live in the tropics — do those people worry about Arctic sea ice melting? (The Arctic Ocean covers 2.8% of the Earth, while the tropical results in the above plot are for 35.5% of the Earth).

The fact is that how much warming is occurring in the troposphere (and in the deep oceans) tells us something about whether the climate models can be trusted. If their feedbacks are reasonably correct (which will determine how much global warming we should see in the future), the models should tell a reasonably consistent story in the atmosphere, in the ocean, at the surface, in the tropics, and outside the tropics.

Remember, the climate models are the basis for energy policy changes, and so their quantitative projections are central to the case that we must do something about our greenhouse gas emissions.

The Great American Eclipse – 40 days to go

July 12th, 2017

The March 29, 2006 total solar eclipse, composite photo taken from images gathered by 3 separate Canon 5D cameras ranging from 8 sec to 1/1000 sec exposure time (Miloslav Druckmller, Peter Aniol, click image for full-resolution).

The Great American Eclipse of Monday, August 21, 2017 will be one of only a couple of chances for many Americans to experience a total solar eclipse. This is the first coast-to-coast total eclipse since 1918. The last total eclipse visible from any point in the contiguous U.S. was 38 years ago, in 1979. Your next chance will be April 8, 2024.

A total solar eclipse at mid-day will be amazing. If you are in the path of totality, some of the brighter stars and planets will appear. The temperature can fall rapidly.

The following map, provided by greatamericaneclipse.com, has a wealth of information regarding how much of the sun will be covered, at what time, and how long totality will last:

Eclipse details for the 21 August 2017 total solar eclipse, click image for full-resolution.

While a partial eclipse will be experienced everywhere in the U.S., where you will want to be is in the narrow (~70 mile wide) path of “totality”, there the moon completely covers the sun. If the skies are partly clear, some of the brighter stars will appear as well as a couple of planets. Totality will last for as long as 2 minutes and 40 seconds.

As long as you are within about 25 miles of the center of the path, you will experience the better part of that maximum time of totality. So (for example), even though Nashville, TN will be 25 miles from the centerline, it will still experience 2 minutes of total solar eclipse.

Safety First!

Since the August 21 eclipse will occur when the sun is high in the sky, it WILL NOT BE SAFE to view it with the naked eyes at any time until totality occurs (the moon completely covers the sun). Until that time, you will need a pair of solar viewing glasses, which are MUCH darker than sunglasses. Do NOT attempt to view the sun with sunglasses, you will permanently damage your eyes. Just before totality, there will be a tiny sliver of bright sunlight…do NOT be tempted to look at it. Solar viewing glasses (and even solar viewing binoculars) might well sell out early, so get them soon.

Will It Be Cloudy?

Climatologically, certain parts of the country will have a greater chance of seeing the eclipse than others. Eclipse2017.org has those probabilities.

But, as a meteorologist I can tell you that weather — not climate — will determine whether you have mostly clear skies or are under a thick thunderstorm anvil.

The following MODIS satellite imagery for mid-day on 21 August 2015 shows that your success will depend heavily upon just what kind of weather systems are occurring and where.

MODIS satellite imagery on 21 August 2015, with the 2017 eclipse path of totality superimposed, showing the wide range of cloud conditions that can occur during a summer eclipse in the United States.

It could be that one of the climatologically best locations (say, north-central Oregon) will be completely cloud covered (as it was on 21 August 2015), while one of the worst places (the Smokey Mountains) will have mostly clear skies if a cool front recently passed by. There is no way to know more than a few days in advance. Thunderstorm anvils blowing off large thunderstorm complexes will likely ruin the experience for many people. This is why I won’t decide where I will go until 1-2 days before the eclipse. I’d love to be in Teton Village for the event, but not if it’s cloudy.

Here in the southeast U.S. in August, even a mostly sunny day will have “popcorn” cumulus clouds that develop by mid-day. One option I’m considering (if that’s the weather forecast) is to go to one of the large reservoirs which tend to stay clear under such condtions, for example Kentucky Lake east of Paducah, or Watts Bar Lake in eastern Tennessee.

But even if you are stuck under the clouds, it is still worth experiencing being in the path of totality. It’s going to get really, really dark in the middle of the day.

To Travel or Not to Travel?

If you live farther than about 6 hours away from the path of totality, and can’t drive there the morning of the eclipse, your other option is to get within 100-200 miles of the path of totality and stay in a hotel the night before, then drive the rest of the way in the morning. Hotels in the path of totality have all been sold out for about a year or so.

I was originally considering going to downtown Nashville, but I’ve heard that hundreds of thousands of people might converge on some of the metro areas, and there could be gridlock. So, I’m still conflicted about whether to go metro or rural.

How to Record the Event?

For most people, just experiencing the event will be magical. Being with a large group of people will raise the excitement level (although if you are easily annoyed by a few overly-excited voices, you might want to avoid crowds).

Now that most people have smartphones, taking some video of the event will be the easiest way to capture the moment. There will be lots of great photos of the sun itself after the event, and they will all look about the same. So, capture the scenery and the reactions of people in cell phone video, instead.

For those of us with heavy-duty photo equipment, we have a number of choices, none of which are easy. Video or stills? If video, real-time or time lapse? Wide-angle landscape shots or zoom in on the sun (with solar filters if not during totality)? I haven’t decided yet. I will probably have one camera on a tripod doing wide-angle video with the sun near the top of the frame, and another camera with a 200-300mm focal length lens taking bracketed exposures of the solar corona over the ~2 minutes of totality, which is what went into the spectacular composite photo at the start of this article.

No matter where we choose to go, happy eclipse hunting, everyone…lets hope for blue skies for as many people as possible!

2017 Eclipse Websites

GreatAmericanEclipse.com

Eclipse2017.org

Space.com

Eclipse2017.nasa.gov

SkyandTelescope.com